
Virtual Engineering and Science Team - Reusable
Autonomy for Spacecraft Subsystems'

Sidney C. Bailin
Knowledge Evolution, Inc.
1050 17th Street, Suite 520

Washington, DC 20036
(202) 467-9588 xl0

sbailin@waves.kevol.com

Michael A. Johnson

NASA/Goddard Space Flight Center
Code 564

Greenbelt, MD 20771
(301) 286-3170

michael.a.johnson.2 @gsfc.nasa.gov

Michael L. Rilee

NASA/GSFC / Emergent IT
Code 931

Greenbelt, MD 20771

(301) 286-4743

michael, ri lee @ gsfc. nasa. go v

Walt Truszkowski

NASA/Goddard Space Flight Center
Code 588

Greenbelt, MD 20771

(301) 286-8821

Walt.Truszkowski@gsfc.nasa.gov

Bryan Thompson
Global Wisdom, Inc.
1737 Harvard St., NW

Washington, DC 20009
(301) 65%0093

bryan @globalwis_tom.org

Abstract--In this paper we address the design,
development and evaluation of the Virtual Engineering

and Science Team (VEST) tool - a revolutionary way to

achieve onboard subsystem/instrument autonomy.
VEST directly addresses the technology needed for

advanced autonomy enablers for spacecraft subsystems.
It will significantly support the efficient and cost-

effective realization of on-board autonomy and
contribute directly to realizing the concept of an

intelligent autonomous spacecraft.

VEST will support the evolution of a

subsystem/instrument model that is provably correct and
from that model the automatic generation of the code

needed to support the autonomous operation of what was

modeled. VEST will directly support the integration of
the efforts of engineers, scientists and software
technologists. This integration of efforts will be a

significant advancement over the way things are
currently accomplished.

The model, developed through the use of VEST, will be
the basis for the physical construction of the

subsystem/instrument and the generated code will
support its autonomous operation once in space. The

close coupling between the model and the code, in the
same tool environment, will help ensure that correct and

reliable operational control of the subsystem/instrument
is achieved.

VEST will provide a thoroughly modern interface that

will allow users to easily and intuitively input
subsystem/instrument requirements and visually get back

the system's reaction to the correctness and compatibility
of the inputs as the model evolves. User

interface/interaction, logic, theorem proving, rule-based

and model-based reasoning and automatic code
generation are some of the basic technologies that will be

brought into play in realizing VEST.

TABLE OF CONTENTS

1. INTRODUCTION

2. MOTIVATION

3. APPROACH

4. IMPLEMENTATION

5. FUTURE DIRECTION

1. INTRODUCTION

The design and fabrication of a spacecraft science
instrument involves the collaboration of several

developers each bringing their own experiences and

viewpoints to bear on the problem of meeting mission
requirements. Engineers and scientists are involved in

various aspects of system specification, implementation,
and operation with tasks being divided according to

capability, resources, or other reasons.

i U.S. Government work not protected by U.S. copyright.

Very often such instrumentsuse cutting edge
technologieswhose behavioris not completely
understood,in whichcasepostdeploymentanalysisis
quite importantand is sharedby engineersand
scientists.Mostscienceinstrumentsusedin spaceare
"one-of-a-kind"with lessonslearnedin previous
instrumentsbroughtto bearin futuregenerationsas
quicklyaspractical.In anyevent,variousinstrument
components or behaviors are quite similar or identical

across a range of instrumentation. For example, many
instruments used in space science use high voltages for

charged particle optics or signal amplification.

Thus many space science instruments must account for

the requirements of high voltage system operation.
These operations are often critical for the success of the

science mission, yet the high voltage systems are often
susceptible to a variety of failures. Many of these

failures can be averted through rapid reconfiguration of

the systems when faults or undesirable system states
arise. Other failures are presaged by trends in health &

safety data that may recommend modifications to the
standing operations plan to improve system performance

or longevity.

Immediately one sees two sets of interests that must be

addressed: first are the requirements for instrument and

spacecraft health, safety, and continued operation; and
second are the science mission requirements for which

the instrument was developed and deployed in the first
place. Questions which make sense in the context of one

viewpoint may not make sense in another. This can
make negotiating instrument development or changes in

operation difficult and lead to uncertainties in scientific

results or suboptimal operations because there are
multiple viewpoints and understandings of any particular

piece of science instrumentation. By the way, no one

viewpoint or understanding need be incorrect to generate
misunderstanding, they may be either incomplete or not

yet translated from one context to the other. Indeed, this
can be a serious issue to consider because often the

utility of a particular viewpoint may lie in its disregard
for particular aspects that are crucial in other viewpoints.

The Virtual Engineering & Science Team (VEST) is a

design tool that allows a number of expert users to

construct models of systems and subsystems. These
models are constructed within a framework provided by

the VEST system. Multiple views of the models provide
some flexibility allowing the model developer to choose

a preferred method of model input and editing. VEST
uses these models to construct control software for the

system being designed. As the models are being
constructed, their consistency is checked and

inconsistencies or potential problems are automatically
highlighted by the system. In this way, design or

requirements problems may be flagged early in the
design or development stage. The system and process

models are used to automatically generate lower level

(C) code that provide autonomous control functions. The
generated system may then be adapted by hand as

necessary during system integration. Thus with VEST
we are researching a virtual environment that allows a
team of researchers (or their agents) to interact with a

system model in a manner of their own choosing:

whether it be a graph, spreadsheet, or textual code.

2. MOTIVATION

The concepts currently underlying the Virtual
Engineering and Science Team (VEST) tool started

about two years ago. It was determined that the idea of
using model-based reasoning as the infrastructure for

supporting on-board autonomous instrument operations

r

-Ixr_iclh lin-itecl
- I_ d_a_l_/

Ct_l_q3_lqllq3L

pi._l-lr iq_qi/,q_K

Figure 1. Ground Control vs. Onboard Control

wasworthinvestigating.An effort to developa
prototypesystemusingtheIMAGE/LowEnergyNeutral
Atoms(LENA)[I]instrumentwasbegun.Thefollowing
figureillustratestheideaata highlevel. Theconcept
wastoenableanon-boardinstrumentsystem,augmented
withamodel-basedreasoningcapability,to monitorits
operationandscienceagendabehaviors.Basedonthese
inputsthesystemwouldbeableto identifyandcorrect
anomaliesandmakescience-agendadecisionsbasedon
theactualsciencedatabeingcollected

Figure1 showssomeof thedisadvantagesof strictly
relyingonthegroundfortotalinstrumentcontrolandthe
correspondingadvantagesofrelyingonon-boardcontrol.
Thereasoningcomponentassociatedwiththeinstrument
packageis referredto as the SurrogatePrincipal
Investigator(SPI). The concept SPI is depicted in

Figure 2.

development for the SPI can be seen as a process used by

ground-based instrument-designers/scientists to develop

provably-correct models that can be used to evaluate the
behaviors of instruments. Secondly, the mode

developed by this process can also serve as the
knowledge-base used by an on-board "intelligent"

process for the command and control of the
corresponding on-board instrument. This dual feature is

what is embodied in the Virtual Engineering and
Science Team (VEST) tool.

3. APPROACH

Tool Concept

The goal of the VEST tool is to provide a convenient
way for the instrument designer to specify the

components of an instrument, the interconnections

Spacecraft _ _ |model(C°mputer'bored

Other spacecraft I ,i,.d
litl behavior -

subsystems |codification of
Instrument Surrogate PI _PI's understanding

 ,i ilrlli,i." iiii,............
Figure 2. Gound-based PI Mental Model

This figure shows a ground-based PI with his/her

knowledge of the instrument, its capabilities and science
capabilities. This "mental model" is transformed into a
representation that is accessible to an on-board process.

This process (the SPI) is capable of using this
representation of the ground-based PI's mental model as

a basis for its model-based reasoning about the
instrument it is controlling.

The initial attempt at developing the SPI was a success.

Some of the model components were actually uploaded
to the IMAGE spacecraft and utilized in the control of

the LENA experiment. Reflecting on the experience
gained by developing the prototype two important ideas

emerged. The first is that the process of model

between components, and their properties, This is in

keeping with the general ideas of Component-Based
System Design in which systems are designed from
building blocks that already exist or that represent
significant, well-defined and well-understood bodies of

knowledge. The reuse of existing components is a

fundamental part of the VEST process. By importing an
existing component into an instrument design, the

designer at the same time imports the behavior and
properties of the component. The process of reuse allows

the designer to avoid "reinventing the wheel."

Component-based design is nothing new in the realm of

hardware engineering; it is becoming the norm in
software development as well. VEST is distinguished

from other component-basedapproachesin its
orientationspecificallyto spacecraftinstrumentdesign,
anditsprovisionof behavioralsemanticsthatgobeyond
a boxes-and-arrowsrepresentationof a design.
Computer-assisteddesign(CAD)tools,for example,
providesophisticatedmeansof drawingschematicsand
reusingstandardparts,buttheyprovidelittleornothing
in termsof correctnesscheckingorotherinterpretation
of the meaningof a design,i.e., its semantics.
Mathematicalmodelingtools suchas MatlabTM or

Mathematica TM provide a rich store of basic mathematical
semantics; they do not, however, provide built-in

component and interconnection types to support
instrument design. VEST seeks to combine the
convenience of CAD with the semantic richness of

mathematical modeling, and to do so in a way that
supports the particular patterns and idioms of instrument

design.

Model Representation

Analysis of LENA--Inspection of the LENA autonomy

code indicated that the chief sources of complexity were
in the definition of quantities derived from data directly
readable from the instrument hardware, and in the
formulation of conditions under which certain actions

need to be taken. Examples of derived data include
count-rate averages and signatures over a given period of

time; complexity of conditions is essentially a matter of
multiple levels of nested if-then-else statements.

These observations led us to conjecture that a modeling
tool should facilitate the formulation and comprehension

of complex data and conditional expressions. This

conjecture has implications both for the content of a
VEST instrument model and for the capabilities (both

analytical and user interface) of the VEST tool.

Content of a VEST Model

In view of the user-oriented goals of VEST and our

analysis of the LENA automation software, we decided
that a VEST model should consist of 6 levels of
information:

1, Instrument components and interconnections.

The principal components of LENA are the
High Voltage Power Supply (HVPS), the
collimator, the Fiber Optic subsystem, and the
Time of Flight (TOF) subsystem.

2. Data directly readable from each component. In
LENA, this includes the voltage and current of

the HVPS, the count rate measured by the TOF,
the spin sector of the instrument, and clock
time.

3. Derived data, such as average, peak, and
standard deviation of count rates, count rate

signatures, and projected count rates.

4. Conditions. These are Boolean expressions
formulated in terms of both the direct and

derived data. Usually, conditions represent
constraints, i.e., situations that must hold in

order for the instrument to function properly.

Along with the logical condition that expresses
the constraint, the model includes information

about when the constraint is to be checked (e.g.,
as often as possible, at a given frequency, upon

a particular type of event, or when particular
conditions hold).

5. Commands. These are the operations by which

the instrument can be controlled. Examples in
LENA include turning the HVPS on or off, or

setting its voltage.

6. Rules, which specify actions to be taken if
constraints are violated, in order to re-establish

proper instrument operation. A rule consists of a
left-hand side, specifying a set of conditions that
requires corrective action, and a right-hand side

consisting of a series of actions to be taken.

Model checking

There are potentially many ways in which a model could
be checked for correctness. Given the emphasis of VEST

on monitoring for constraint violations and implementing
corrective actions, we arrived at a particular form of
model checking aimed at facilitating the instrument

designer's thought processes. Model checking in VEST

concerns the possibility that actions intended to correct a
given anomaly might inadvertently contribute to another

problem.

To do this, VEST examines the rules of the model pair-

wise. For any two rules Rt and R2, VEST examines the
action side of Ri and analyzes whether these actions can
cause the condition side of R2 to become valid where

they were not valid prior to the Ri actions. If this is

possible, then from a logical point of view either the
conditions of R] or those of R2 are not sufficiently

circumscribed. The instrument designer might know that
such a situation is impossible, but he has not articulated

this knowledge within the model. VEST therefore alerts
him to the issue; it is up to the designer to decide
whether to refine the conditions of the one or both of the
rules.

Rule Analysis Algorithm---Carrying these ideas down to
a further level of precision, we came up with the

following algorithm. Given two rules in the form of:

LHSI=>RHSbLHS2=>RHS2

whereeachLHS is a list of conditions(together
indicatinganundesirablesituation),andeachRHSis a
list of assignments(to fix the situation),do the
following:

1. Time orderRHSIto form RHSta.This is
discussedbelow.

2. Apply the same variable replacements
throughoutLHS2toformLHS2a

3. Formtheexpression(LHSIandnotLHS2)and
(RHSi_andLHS2_)

4. Trytofindasolutiontothisexpression.

Thetimeorderingof variables,mentionedinstep1,isan
approachto formalizingthe temporalrelationship
betweenoldvaluesandnewvaluesof variablesinarule
thatconsistsof asetof conditionsandasetof actions.
We assumethat the actionsare assignmentsof
expressions(formulatedin termsof the variables
introducedintherule'sconditions)tovariables.Thegoal
of thetimeorderingprocessis torepresentthe"before"
and"after"statesof thevariablessothatbothtypesof
informationcanbeusedin theruleanalysisprocess.We
do thisbycreatingan"after"versionof eachvariable
thatisassignedavaluebysomeactionintherule'sright-
handside.Forexample,giventheRHSaction

x=x+2y+z

we renamethevariableon theleft-handsideof the
assignmenttobex_,yielding

x,=x+2y+z

so that x still representsthe old value(subjectto
whateverconditionsappearontheleft-handsideof the
rule),whilexi representsthenewvalue.Notethatthe
occurrence(s)ofx ontheRHSof theassignmentareleft
intact,sincetheyareintendedto representthe"before"
value.

Having done this, we propagate the replacement of x
with x_ in all occurrences of x in all succeeding

assignments in the rule's right-hand side. The idea is that
once the value of x has become the "after" value, all

subsequent references to x implicitly refer to that new
value, so they should be replaced by x,.

We do this with the first action on the right-hand side of
the rule, then the second, the third, etc. All replacements

propagate forward to the remaining assignments, not to
previous ones. Once this process is complete, we replace

the assignment operator "=" with the equality relation
"==" The right-hand side is now a set of conditions

itself, representing the state of affairs that obtains after
the rule has been executed.

User Interface Requirements

A primary goal of VEST is to facilitate the formulation
of an instrument model in high-level terms. In particular,

this means describing the required behavior of the
instrument in terms that are intrinsic to the instrument.

For insight into how to do this, we drew on our

experience with LENA.

Most of the LENA automation code consists of

conditional assignments and/or function calls. This is
amenable to being expressed in a rule notation, i.e., a list

of conditions followed by list of actions. Rules simplify
the representation by removing the syntactic details of

program code: in particular, by flattening out complex
sets of nested conditions. However, there is a cognitive

tradeoff between program notation, in which conditions
are nested, and rule notation in which all conditions are

explicitly stated in each rule. The benefit of the rule
notation is that you see the exact conditions under which
an action is taken, localized (in a rule left-hand side)

right above the action. The benefit of program notation

is that you do not repeatedly state conditions that apply

to a range of inner conditions -- so you get a sense of the

scope of the conditions.

Although conflicting, each of these benefits aids in

comprehension of the instrument logic, and especially in

verifying correctness and completeness. In the VEST
tool, we aimed to strike a balance between nested and

fiat representations of complex conditions, in order to
facilitate comprehension of the instrument model.

Another requirement is to support comprehension of the
many data fields involved in an instrument. To do this,
all field references should be hyperlinked to a description
of the field. This requirement is based on the notion that

hyper-linking is easier than looking up a field in a table
of contents or index. In addition, each field declaration

should be followed by a description that includes a list of

references to the field, hyperlinked to the references
themselves.

Similarly, assignment of one field's value (or a defined
value) to another should be easily specifiable via point-

and-click, This offloads the instrument designer's need
to remember and type field names. However, the tool
user should be able to type field names in an assignment

if he wants to, since it is sometimes easier than point-
and-click, especially for rapid input, and it allows greater

flexibility.

4. IMPLEMENTATION

For the initial prototype,we wantedto focuson

exploring the kinds of model representations and user
functionality that would best meet the goals of VEST.

We wanted to avoid becoming embroiled in the

implement initial versions of the core VEST
functionality.

Model Elements--Components and their

interconnections are specified initially as a graphic using

Powerpoint, as shown in Figure 3.

Figure 3. A PowerPoint drawing is used to specify the components and interconnections of the instrument.

The Export and Import buttons (within the red circle) transfer the model information to and from the extended

Excel tool. The Details button provides a toggled display of the detailed modeling information provided

through the extended Excel tool.

development of user interface capabilities that are, on the
one hand, well understood and widely available, but also

a potential drain of development resources. We chose,
therefore, to implement the prototype as an extension to

Microsoft Office TM tools, in particular Exce(M and
Powerpoint TM. VEST functions were implemented in

Visual Basic and made available as macros through these
tools.

Our choice of software platform might be surprising

considering the goals of VEST; the following
considerations lay behind the choice: First, the Office

tools are widely used within the target VEST user
community, and their user interfaces are very familiar.
Second, the user interfaces have been stressed and

refined over a period of time and by a large user base

with which few other frameworks can compete. We
viewed this as a particularly important fact because the
clarity and robustness of the user interface will play a

key role in selling VEST to its target users. Finally, the
application program interface (API) provided by these

tools provided sufficient visibility and flexibility to

The graphical view provides an overall understanding of
the structure of the instrument, including the reuse of

existing components. This information is then exported
to Excel, which is used to provide detailed model

information. Excel is the preferred mechanism for the

detail level since it consists largely of tables of elements.
The type of each element in column two is indicated by

an icon, which is automatically created when the element
is defined through the Element Editor.

The Excel representation, shown in Figure 4, consists of
two main columns, the first of which lists the

components imported from the graphical view.
The second column lists, for each component, detailed
model elements associated with that component, e.g.,
raw and derived data, constraints, actions, and rules.

Information associated with the instrument as a whole,

rather than with a specific component, can also be placed
in this column under the grouping "System."

II I I

Icomponent Name

system

hvps

1

tof

collimator

B '- IR
I ._

in sector
Itage

Raw data

Figure 4. Detailed attributes and derived objects for each instrument component are specified using an extension of Excel.

Element Editor--In order to facilitate specifying the
details of derived quantities, conditions, actions, and

rules, we developed a context-sensitive editor for these
element types. The editor is implemented as an Excel

macro, written in Visual Basic. Figure 5 shows the user
interface, which pops up over the Excel spreadsheet on a

single keystroke, Since different types of information are
required for each type of element, the editor is

implemented as a tab panel, and the fields appropriate for

each element type appear when the corresponding tab is
selected.

Although tree form typing is permitted, the editor

provides operator buttons for building complex
expressions; the use of these buttons ensures that
expressions will be well formed (i.e., correct number of

operands, parentheses balanced, etc.). When creating or

modifying expressions, the designer can import another
element simply by clicking on that element in the

spreadsheet and pressing a single command key.
Conversely, the user can select an arbitrary sub-
expression in the currently edited expression, and with a

single keystroke highlight (in the spreadsheet) all the
elements that are referenced in the sub-expression. These

functions minimize free form typing and facilitate
comprehension by linking referenced elements. They

represent an initial attempt to address the requirements
discussed in the Content of a VEST Model Section.

Solver approach

Figure 5. A context sensitive editor allows for the

precise definition of model element details.

Rulechecking,thealgorithmforwhichwasdescribedin
theRule Analysis Algorithm section, is implemented

using the Solver add-in to Excel. The Solver takes a set
of constraints involving a set of spreadsheet ceils and

tries to find values for the cells that satisfy the

constraints. The rule checking algorithm takes a pair of
rules in the VEST model and converts them to a set of

logical expressions consisting of Boolean combinations
(involving the logical operators AND, OR, and NOT) of
equations and inequalities.

Unfortunately, the Solver does not take arbitrary
expressions of this form, but only conjunctions of

equations and inequalities. We handle this by converting
the expression into disjunctive normal form, which

consists of a disjunction (ORs) of conjunctions (ANDs)
of equations and inequalities. Each conjunctions is then

passed to the Solver successively. If any of them is
solvable, a potential rule conflict has been discovered.

Solver complexity issues

Conversion of logical expressions to disjunctive normal

form works, in principle, but we found that

computationally it is infeasible. The conversion process
involves replicating sub-expressions in the process of
pulling OR operators out, and pushing AND and NOT

operators in. In general, this results in an exponential rate
of replication, so that even moderately complex

expressions become intractably large, and the algorithm
bogs down.

A further problem with the Excel Solver is that it does
not accept strict inequalities (i.e., x < y) but only

inequalities of the form x <= y. To get around this, we

convert x < y to x <= y-e where E is a settable constant

representing the desired level of precision.

The problems suggest that future versions of VEST must

employ a solver that is more oriented towards
mathematical and scientific applications. Determining
whether a solver exists that would meet the VEST

requirements is an open issue, which we will pursue in
further work.

Vizualization

Another novel aspect of the VEST tool is the support it

provides for visualizing complex logical expressions.
This feature is a response to our analysis of the LENA
automation software, from which we inferred that much

of the challenge in developing an autonomous instrument
lies in comprehending the possible states and
combinations of conditions. The VEST visualization

functions uses 3-dimensional graphics to represent the

structure of a logical expression built using the AND,
OR, and NOT operators. We experimented with several

such representations. We converged on a "close vs. loose
stacking" concept in which conjunctions are indicated by

a close stacking of one expression on top of another,
disjunctions are indicated by a looser stacking, and

negation is indicated through color. Figure 6 illustrates
the process.

I II

Figure 6. Visualization of the expression:
(u = v) OR (x = y AND NOT (a >= b OR c < .0001))

The red horizontal separator indicates OR, while vertical stacking without the red
separator indicates AND. Complex expressions are enclosed in a "bookcase." The color
of the bookcase defaults to blue. while negation is indicated via a black bookcase.

Code Generation

The VEST tool generates C code that represents each
component as a structure (representing the raw data
fields) with associated definitions (representing derived

data and conditions) and functions (representing actions,
and rules).

Fault isolation code is also generated for the instrument
as a whole. These functions use a standard model-based

approach of fanning out from an observed anomaly in
order to determine the source of a problem. If a

constraint governing a particular component is violated
(for example, a threshold exceeded), that component is

first checked for discrepancies between its input values
and output values. If all rules governing the relations

between the component's inputs and outputs are
satisfied, it is inferred that the source of the problem lies

elsewhere and those components that provide direct input

to the original component are checked. The process
continues iteratively in this way until a faulty component

is found or there is nothing more to check.

4. FUTURE DIRECTIONS

Generalization to other instruments

The application of what we have learned working with
VEST is readily transferable to space systems with high
voltage components that may suffer faults or degrade

over time. These components include electronic optics
and detector components such as found in

IMAGE/LENA. These particular components are quite
common in the various kinds of particle sensors that are

used in science and industry. Related components are
found in some light amplification technologies that suffer
similar vulnerabilities to over stimulation from the

science target or interference. VEST may enable the
fairly direct transfer of some software functions between

such closely related components. However, there is
more to VEST than the modeling of high voltage power

supplies and the control of particle optics and detectors.
VEST also provides an entire layer of control functions

that allow the production of a software system that seeks
to maintain the health and safety of the system to be

deployed.

Each different kind of system that uses VEST will
require its own set of interfaces and models, perhaps

built on or extending prototypes already built using
VEST. Once constructed, these models and interfaces
can then be linked or mixed-in with software functions

that aid the implementation of instrument autonomy. In

this way common software themes arising in these
systems may be shared between projects. What enables

this sharing across products is the strict enforcement of a
design and development protocol: the VEST tool both

provides and enforces this protocol. However, flexibility
is still maintained by providing escape hatches to lower
levels of code development.

That said, the application of VEST to the development of

systems involving high voltage electronics and particle
detectors follows the example provided by its application

to LENA-like instruments. Electromagnetic imagers,

e.g. X-ray, XUV, etc, have their own operational
characteristics, often involving high voltage electronics,
that would benefit from VEST. Even instruments with

geometrical or pointing constraints, e.g. Sun-avoidance,
could benefit from VEST's consistency checking. In

fact, it is likely that nearly any Boolean or finite ranged
function defined on instrument state could be made part

of a VEST model. In that case, models with even purely

geometric states, e.g. CAD models, could be integrated
and checked with VEST. One interesting possible

application of VEST is to aid the development of fault
tolerant control systems for high fault rate systems or

components, e.g. non radiation-hardened electronics

applications in the space environment.

Validation

The next step we plan to take with VEST is to validate
the approach described in this paper by generating

autonomous control systems (ACS) for two space
science sensors. The first sensor for which we will

construct a model, rule system, and operating scheme
will be LENA itself. Comparing the VEST-produced

ACS with the manually produced one will provide
interesting insights into the tradeoffs between the two

approaches. We expect to gain insight into what was
easily accomplished in one, but not so easily

accomplished in the other. The way errors, e.g. design or
coding, manifest themselves in the two systems will be

compared. How the existence of models and formal
consistency checks affects testing and quality assurance
for flight qualification is of great interest. Finally, the

performance of the VEST-produced ACS will be
compared with the manually generated system. In this

way we will validate the VEST-aided design and
development process, as well as the VEST-produced
ACS itself.

Second, we hope to show that higher level ACS
functions could be brought to bear for science
instruments that are not so similar to LENA. This will

show that VEST can provide cross-project reuse and
generalization. We will choose a key instrument type to

examine based on the availability of expert knowledge,

instrument data, and resources. One option is to apply
VEST to an imaging instrument, e.g. a Solar X-ray

imager, that has a mix of health & safety requirements,
perhaps including high voltage electronics, but may also

feature a wider range of operational functions and

requirements.Forexample,manysuchimagershave
multiplemodesincludingfield-of-viewsize, data
gathering intervals, and pointing requirements.
Switchingbetweenmodescanbe inducedfor either
health& safetyconcernsor scienceoperations.
Autonomycan be importantfor such instruments
becausethereactiontimeavailableto setmodesfor
optimalsciencedatagatheringis usuallymuchgreater
thanthecommunicationlatencyinherentin theground-
basedcommandandcontrol.UsingVESTto develop
suchscienceoperationssoftwarewouldbea significant
generalizationfromLENA,whileshowingsomereuse
due to commonrequirementsand relatedhardware
components.

The Next Generation

After prototyping and verifying VEST, we then plan to
review the approach we have taken and see how the
decisions we made along the way affected the results of

our work. Implementation issues concerning the
usability and robustness of the commercial software in

this work will be reviewed, and lessons learned will

instruct future implementations of the VEST application.

For example, we expect that it will be profitable to
review commercial mathematical modeling applications
and expression solvers for model building, state

specification, simulation, and visualization. However,
any of these systems will have to be augmented with the

VEST framework of interconnections between system
components, their behaviors, and constraints thereupon.

A library of functions for implementing science
instrument autonomy will have to be ported to, or
developed for, the new programming environment from

which the embeddable target code would be generated.

Though it is quite early to say definitively, it may be
possible to allow communication between a software-

side modeling & development tool like VEST, and a
domain specific tool, e.g. a mechanical CAD application,
to check for the consistency of an even richer spaces of
states and constraints.

REFERENCE

[1] T. Moore et al., "The Low-Energy Neutral Atom
Imager for IMAGE", Space Sci. Rev., v91, p155-195,
2000.

BIOGRAPHIES

Sidney C. Bailin is founder and President of Knowledge

Evolution, Inc., a firm that develops and promulgates
innovative knowledge sharing

technology. Prior to forming
Knowledge Evolution he was a

Vice President of Engineering

at Computer Technology
Associates, where for 12 years
he played a leading role in that

company's software technology
program. His software

experience, which spans 22

years, has ranged from the development of production
real-tone communications systems to research and

development #7 automated reasoning and in information
agents. He was one of the originators of Object-Oriented

Analysis. He has been active in the software reuse
community for the past 14 years, and is best known in

that community for introducing the KAPTUR
methodology, which links reuse to rationale capture. His

most recent work concerns the dynamic negotiation of
ontologies between agents. Dr. Bailin has published

roughly two dozen papers on various aspects of software
engineering. He currently sits on the Editorial Board of

the Encyclopedia of Software Engineering, where he
oversees the topics areas of Software Reuse and

Artificial h_telligence in Software, and shares
responsibility for entries concerning Object Oriented

Design. He is the principal author of a recent book on
the LIBRA approach to knowledge sharing, published by

the IEEE Press.

Michael A. Johnson is a senior electrical engineer in the

GSFC Microelectronics and Signal Processing Branch.
He has served as the lead

electrical engineer for
numerous flight systems at

GSFC, including the
IMAGE�LENA Electronics

Systems, the Cassini/CAPS

Spectrum Analyzer, and the

Triana/PlasMag Electron
Spectrometer Controller. His
current research interest

involves developing autonomous control strategies for
spaceflight instruments that have severely constrained
resources.

Prior to coming to Goddard, he was a lead electrical

engineer at MIT/Lincoln Laboratory responsible for the
design and development of space and ground-based

systems. He received his B.S, M.S and Electrical
Engineer degrees from MIT.

Michael L. Rilee is a scientist with Emergent IT

supporting the GSFC Laboratory for Extraterrestrial

Physics and the Science

Computing Branch of the GSFC

Earth and Space Science

Computing Division. For

NASA's Remote Exploration and

Experimentation project he has

led development of the Plasma

Moment Application and the

Radio Astronomical lmager,

which are science data analysis

applications designed for space borne supercomputers.

He is currently researching a High Performance

Computing System that may fly on Magnetospheric Multi

Scale (launch 2007). At GSFC he has been active in

Nano-Satellite technology development and the

application of parallel computing to data analysis and

astrophysical fluid simulation (PARAMESH). He

received his Ph.D. and M.S. in Astrophysics (Plasma

Physics) from Cornell University, and his B.A. in

Astrophysics and Mathematics from the University of

Virgh_ia in Charlottesville, VA.

Walt Truszkowski is currently

the Senior Technologist in the

Advanced Architectures and

Automation Branch at NASA's

Goddard Space Flight Center.

in that capacity he is

responsible for managing the

agent technology research for

the Branch. Currently work is

underway to establish an agent-based system for the

ESA/NASA satellite SOHO. He also serves as the Lead of

the Information Technology Research Group in the

Branch. In that capacity, he is leading an effort to create

a repository of information on technologies of

importance to researchers in the organization. He is also

leading the research in the areas of human factors of

website desiglu'use and the application of agents for the

intelligent access and management of web-based

information.

He is a National Research Council (NRC) accredited

Fellow participating in the Resident Researcher's

Associate (RRA) program at the Goddard Space Flight

Center.

